Jump to content

Hipi Zhdripi i Matematikës/1045

Nga Wikibooks
7. UNAZA, TRUPI DHE FUSHA
       Krahas me grupin, tri struktura tjera të rëndësishme të matematikës bashkëkohore janë: unaza, trupi dhe fusha.
       P ë r k u f i z i m i  7.1. - Unazë quhet bashkësia jo e zbrazët A në të. cilën janë të përkufizuara dy veprime binare , , të quajtura mbledhje dhe shumëzim, ku:
       (1) (A, ) është grup abelian,
       (2) (A, ) është grupoid; dhe
       (3) shumëzimi është distributiv ndaj mbledhjes.
       Unaza shënohet me simbolin (A, , ) .
       Kur ky përkufizim zbërthehet, del se bashkësia jo e zbrazët A lidhur me veprimet binare , quhet unazë, nëse plotësohen këto shtatë kushte:
       {c1) (a, bA)(cA) abc ;
       (c2) (a, b A) a bb a ;
       {c3) (a, b, c A) (a b) c a (b c) ;
       (c4) (0A) a00aaaA ;
       (c5) (a A) ( (-a) A) a (-a)(-a) a0 ;
       (c6) (a, bA)(cA) abc ; dhe
       (c7) (a,b,cA) a(bc)abac ,
        (bc)abaca .
       Këto kushte formojnë sistemin e aksiomave të unazës. Siç shihet unaza (A, , ) lidhur me mbledhjen është grup aditiv abelian, ndërkaq lidhur me shumëzimin grupoid multiplikativ, ku njëherazi shumëzimi është distributiv (nga e majta dhe nga e djathta) ndaj mbledhjes.
       Unaza (A, , ) quhet asociative, nëse shumëzimi është asociativ: a (b c)(a b) c , ndërsa quhet komutative, nëse shumëzimi është komutativ: a bb a . Kur shumëzimi është asociativ dhe komutativ, (A, , ) quhet unazë asociative-komutative.
       P.sh.: (, +, .), (, +, .) dhe (, +, .) janë unaza asociative-komutative, ndërsa (, +, .) nuk është unazë.
       S h e m b u l l i  24. -  Të tregohet se bashkësia A{0, 1, 2, 3, 4, 5} në lidhje me mbledhjen dhe shumëzimin sipas modulit 6 është unazë asociative-komutative.
       Z g j i d h j e : Meqenëse plotësohen kushtet:
       (1) (A, +6) është grup aditiv,
       (2) (A, .6) është semigrup,
       (3) Shumëzimi sipas modulit 6 është veprim distributiv ndaj mbledhjes sipas modulit 6, dhe
       (4) Shumëzimi sipas modulit 6 është komutativ,
andaj konkludojmë se (A, +6,.6) është unazë asociative-komutative.


< 1044
faqe
- 1045 -

1046 >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
200+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
300+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
400+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
500+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


< 1044
faqe
- 1045 -

1046 >