- në përgjithësi për in, n
vlen:
1, kur n 4k
i, kur n 4k+ 1 -1, kur n 4k+2 (32) -i, kur n 4k+3.
3.4. RRËNJËZIMI DHE LOGATIRMIMI I NUMRIT KOMPLEKS
- P ë r k u f i z i m i 3.4.1. - Rrënja
e numrit kompleks quhet numri kompleks i tillë që fuqia e tij është e barabartë me , pra:
![{\displaystyle \scriptstyle \mathrm {\sqrt[{\mathrm {n} }]{\mathrm {z} }} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/beee04709866412744fd178031ceafc1be3826bd) w wn z, n . (...33)
- Kur në barazinë e fundit zëvendësohen format trigonometrike të numrave kompleksë z, w përftohet:
n(cos n + i sin n ) r (cos + i sin ),
- nga del:
n r dhe n  +2k ,
- respektivisht
  vlera aritmetike e rrënjës,
  k 0, 1, 2,..., n- 1.
- Pra:
![{\displaystyle \scriptstyle \mathrm {\sqrt[{n}]{\mathrm {r(\cos \varphi +i\ \sin \varphi )} }} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/baca0b61248e4816fda9a52f52a5007fbbffab44)  ![{\displaystyle \scriptstyle \mathrm {\sqrt[{\mathrm {n} }]{\mathrm {r} }} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa4be98b953ee3b6e7950a024262b7947d83d6b6) cos +i sin , (...33a)
- ku k
0,1,2,...,n-1.
- Nga kjo formulë shihet se rrënja n e numrit kompleks ka gjithsej n vlera të ndryshme.
- S h e m b u l l i 4. - Të njehsohet
.
- Z g j i d h j e : Në bazë të formulës (33a) del:
-
|
zk
|

|
|
|
 cos +i sin , k 0, 1, 2, 3, 4.
|
|
Për k 0:
|
|
|
z0 [cos (-9°)+i sin (-9°)] (0,98769-0,15643 • i);
|
-
|
Për k 1:
|
|
|
z1 (cos 63° +i sin 63°) (0,45399+0,89101 • i).
|
|
Për k 2 : z2 (-1+i); k 3: z3 (0,89101 +0,45399 . i); k 4: z4 (0,15643 - 0,98769 • i).
|
|