Jump to content

Hipi Zhdripi i Matematikës/1013

Nga Wikibooks
       S h e m b u l l i  6. - Le të jenë p, q këto dy gjykime:
        p : Numri natyral plotpjesëtohet me  ;
        q : Numri natyral plotpjesëtohet me .
       Implikacioni i tyre do të jetë :
        pq : Nëse , atëherë .
       Kuptohet, këtu vlera e saktësisë së gjykimit q varet prej saktësisë së gjykimit p. Nga ky shembull mund të vërehet edhe fakti se implikacioni është një veprim binar jokumutativ, sepse në rastin e përgjithshëm
.
       Për implikacionin pq, implikacioni qp quhet i anasjelltë.
       V ë r e j t j e : Rast i veçantë i implikacionit është konsekuenca - kur prej gjykimit p logjikisht rrjedh gjykimi q, i cili është i saktë vetëm kur p është i saktë . Raste të këtlla paraqiten në mes të teoremave matematike dhe konsekuencave të tyre, sikurse edhe në mes të supozimeve të teoremave dhe konkludimeve të tyre. Në këto raste implikacioni pq lexohet edhe kështu : p është kusht i mjaftueshëm për q; q është kusht i nevojshëm për p; q është rrjedhim i q ; etj. Fakti se prej gjykimit p logjikisht nuk rrjedh gjykimi q, shënohet pq .


       S h e m b u l l i  7. - Le të jetë gjykimi p : a > 0 b > 0 . Si konsekuencë e gjykimit p mund të nxirret gjykimi q:ab>0 , d.m.th. :
a>0 b>0 ab>0.
       Mirëpo, e anasjellta nuk vlen (qp) , sepse q është vetëm kusht i nevojshëm (por jo i mjaftueshëm) për p, pra :
ab>0 a>0 b>0.
1.2.5. EKUIVALENCA E GJYKIMEVE
       Kur gjykimi i përbërë formohet nga dy (ose më shumë) gjykime të tjera me ndihmën e fjalëve (shprehjeve) „nëse dhe vetëm nëse", „atëherë dhe vetëm atëherë", „e nevojshme dhe e mjaftueshme", thuhet se përcaktohet me veprimin e ekuivalencës[1] .


       P ë r k u f i z i m i  1.2.5.1. - Ekuivalenca e gjykimeve p, q quhet gjykimi pq (lexo : p ekuivalent q), i cili është i saktë kur të dy gjykimet p, q janë të sakta ose janë jo të sakta.
       Simboli është shenja e ekuivalencës. Tabela e saktësisë se ekuivalencës është :
v (p) v (q) v (pq) ose më shkurt

  1. Nga fjala latine equivalens - me vlerë të barabartë, sinonim

< 1012
faqe
- 1013 -

1014 >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
200+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
300+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
400+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
500+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


< 1012
faqe
- 1013 -

1014 >