Hipi Zhdripi i Matematikës/1041

Nga Wikibooks
Jump to navigation Jump to search
       Elementi i tillë a quhet përlindëse e grupit (A, ).
       S h e m b u l l i  21 -  Grupi (A, •), ku A është grup ciklik me dy përlindëse: dhe .Vërtet: etj.
       Prej aksiomave (a1) - (a4) mund të nxjerrim këto veti të rëndësishme të grupit:
       V e t i a 1.-Nëse në grupin (A, ) a-1 është element invers i elementit a, edhe elementi a është invers për elementin a-1 , d.m.th. (a-1)-1 a.
       Kjo veti për grupin aditiv (A, ) ka këtë trajtë: -(-a)a.
       V e t i a 2.- Në grupin (A, ) secili barazim
       (1) axb,2) yab
ka nga një zgjidhje (rrënjë) të vetme e cila për barazimin (1) ka trajtën . x a-1 b, kurse për barazimin (2) trajtën y b a-1 .
       Për grupin aditiv abelian {{mate|(A, ) barazimet
a xb dhe y ab
kanë një zgjidhje të përbashkët: xy(-a) bb (-a)b-a.
       V e t i a 3.- Në grupin (A, ) vlejnë këto implikacione:
a b ac bc,
baca b c.
       Në grupin aditiv abelian (A, ) vlen implikacioni
a ba c bc.
       V e t i a 4.- Në secilin grup (A, ) vlen barazia:
(ab)-1b-1a-1 .
       Në grupin aditiv abelian (A, ) kjo veti shprehet me formulën:
-(a b)(-a) (-b).
       Le të jetë (A, ) grup.
       P ë r k u f i z i m i  6.3. - Nënbashkësia jo e zbrazët A1 bashkësisë A quhet nëngrup i grupit (A, ) në qoftë se A1 është grup lidhur me veprimin e përkufizuar A dhe shënohet (A 1, ) Mavogëlbarabart.PNG (A, ).
       Secili grup (A, ) përmban së paku dy nëngrupe - vetë grupin (A, ) dhe nëngrupin ({e}, ), ku e është element neutral. Këto nëngrupe quhen nëngrupe triviale të grupit (A, ). Nëse grupi (A, ) përmban edhe nëngrupe tjera (Ak, k1, 2, ... , n, ato quhen nëngrupe jotriviale (nëngrupe të vërteta) të grupit (A, ) dhe shënohen (Ak, ) < (A, ).


< 1040
faqe
- 1041 -

1042 >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
200+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
300+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
400+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
500+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


< 1040
faqe
- 1041 -

1042 >