Jump to content

Hipi Zhdripi i Matematikës/1117

Nga Wikibooks
       V ë r t e t i m Në bazë të ligjeve për transponimin e matricave (p. 4.1.) kemi:
       (a) , d.m.th. , prandaj konkludojmë se është matricë simetrike;
       (b) ,
,
d.m.th.:
,
prandaj konkludojmë se është matricë e Hermitit.
7. FORMAT LINEARE
7.1. RANGU I MATRICËS
       Le të jetë dhënë matrica drejtkëndore . Nga kjo matricë i veçojmë rreshta dhe shtylla, ku . Elementet që ndodhen në prerjen e këtyre rreshtave dhe shtyllave formojnë një matricë katrore të rendit e cila quhet submatrica katrore e matricës . Kuptohet matricës drejtkëndore i përkasin submatricat katrore të rendeve të ndryshme, prej rendit e deri te rendi . Pra, rendi më i lartë i submatricave katrore të matricës është . Kur , atëherë matricës i përkasin gjithsej () submatrica katrore të rendit , ndërkaq kur , asaj i përkasin () submatrica katrore të rendit .
       P ë r k u f i z i m i  7.l.1. - Matrica ka rangun nëse ndërmjet submatricave katrore të kësaj matrice ekziston së paku një submatricë regulare e rendit , ndërsa submatricat katrore të rendit më të lartë se , edhe nëse ekzistojnë, janë singulare. Rangu i zero-matricës është .
       Rangu i matricës simbolikisht shënohet me ose .
       P.sh. rangu i matricës
është , pasi që të gjitha submatricat katrore të rendit të katërt të saj janë singulare, kurse ekziston një submatricë regulare e rendit tretë. E atillë është b.f. submatrica:


< 1116
faqe
- 1117 -

1118 >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
200+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
300+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
400+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
500+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


< 1116
faqe
- 1117 -

1118 >