Jump to content

Sistemi i n ekuacioneve lineare me n të panjohura

Nga Wikibooks
Jeni duke lexuar pjesë nga libri në punim e sipër:
Matricat dhe përcaktorët


Matricat


Përcaktorët


Sistemet e ekuacioneve


Format lineare


Forma e përgjithshme e sistemit të ekuacioneve (barazimeve) lineare me të panjohura është:

ku njëlloj, sikurse për sistemin (32), përkufizohet përcaktori kryesor , përcaktorët karakteristikë dhe zgjidhja e këtij sistemi. Gjithashtu, në mënyrë analoge, nxirren formulat e Cramerit respektivisht i shumëzojmë me radhë ekuacionet e këtij sistemi me kofaktorët të elementeve , ku he pastaj ato ekuacione i mbledhim njëherit duke grupuar kufizat sipas të panjohurave ;

Tani duke pasur parasysh formulat:

(a) ;

(b) ;

(c)

barazimi i fundit merr këtë formë:

respektivisht

Kur supozojmë se , përftohen formulat e Cramerit:

(...35)

Nëse në sistemin (34) kufizat e lira janë të barabarta me zero (), sistemi i tillë quhet sistem i ekuacioneve homogiene. Kur , ky sistem ka vetëm zgjidhjen triviale:

Shembuj[redakto]

Të zgjidhet sistemi i ekuacioneve:

Zgjidhje Përcaktorët e këtij sistemi janë:

.

Me aplikimin e formulave të Cramerit përftohet : dhe , prandaj katërshi i renditur () është zgjidhja e sistemit të dhënë.